

Big Data and Insurance

Stephen Mildenhall

July 22-24, 2014

Prepared by Aon Center for Innovation and Analytics, Singapore

Agenda

Section 1	Data, Big and Otherwise
Section 2	Transforming Data into Information
Section 3	Transforming Information into Insight
Section 4	Communicating Insight for Action
Section 5	The Dark Side
Section 6	Moving Forward

Data Information In<u>sight</u> Action

Section 1: Data, Big and Otherwise

Data: the raw ingredient of decision making

[Big] Data

Three Vs Volume Variety Velocity Value | Veracity

BIG = hard to manage on existing technology

Big data: how BIG is big?

Bytes	Example		
Mega	10 ⁶ Spreadsheet		
Giga	10 ⁹ CD-ROM, flash drive	SONY	
Tera	10 ¹² Upper bound of small	CD-R 700 _{MB}	
Peta	10 ¹⁵ Lower bound of Big		
Exa	10 ¹⁸ BIG		Library of Co
Zetta	10 ²¹ Definitely BIG		All printed m
Yotta	10 ²⁴ Huge		
			300PB Google's data 10 EP
C	tion and Analytics, Singapore Proprietary & Confidential	red data 500EB-3ZB +2.5EB/day	Google's data 10 EB

Driverless car data torrent...

Driverless cars produce 750MB data per minute

3.6ZB/yr for US fleet

AON Empower Results®

3.2T miles / yr @ 40 mph x 750 MB / min; 250M vehicles

Aon Center for Innovation and Analytics, Singapore | Proprietary & Confidential

Data: the raw ingredient of decision making

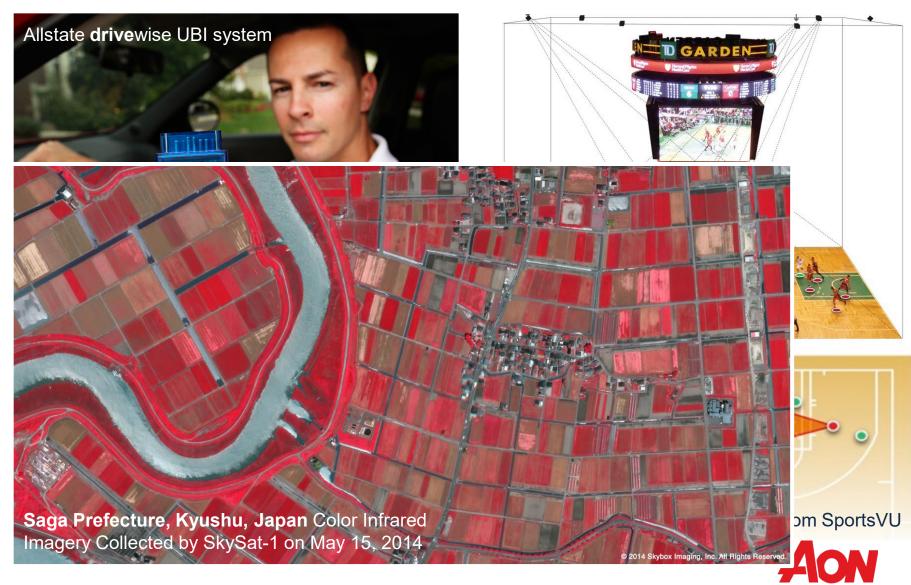
Aon Center for Innovation and Analytics, Singapore | Proprietary & Confidential

Comparison of insurance and "big" data models

Internet Big Data
Massive, free data
Internet of Things
Free: user contributed, digital exhaust
Streaming
Unstructured - variety
Homogeneous within type
Low value density
Very high volume

Successes and potential	Memes, curiosities and some value
Credit	Google Flu, translate
Progressive and GEICO growth	Amazon "Your recommendations"
Cat modeling	Click on me!!

If you don't have the data...make it



Daily update frequency allows pre- and post-event damage assessment

New data to better manage claims Aon Benfield Inpoint

Accountability Objective, outcomefocused measures and "leakage" drive behaviors



Office	CPI (0-300)	Leakage %
New York	279	6%
Dallas	253	8%
San Francisco	227	12%
Chicago	217	14%
Tampa	198	15%

Actions

Actionable, root-cause level insight into areas impacting claims outcomes down to individual adjuster

Phase → Investigation						
Root Cause	Opportunity					
Comparative or contributory fault not considered in determination of liability	12%					
Failure to properly evaluate hold harmless agreement within contract	10%					
Investigation failed to adequately address relevant issues of the claim	9%					
Failure to determine date of loss	6%					

Assessment

Standardized assessment forms with claims best-practices objectively assess and measure performance

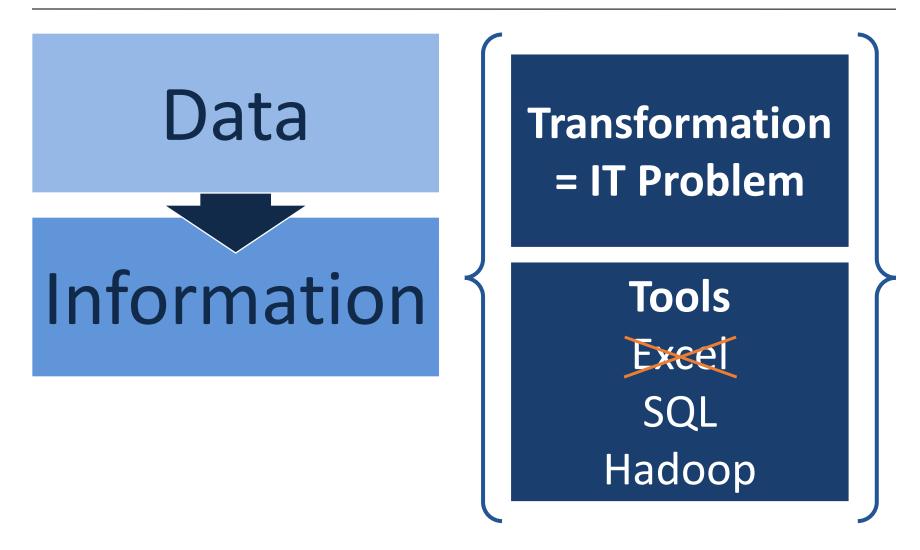
See figure. View Buckmarks											
201 201 All aller fab											
Claim Volume by Loss State (Nap)		Contrage	_	_		10 A	Cycle fa	te ho			
		201-04604									
an marker	a	Crossage	Tokase	Cycle Tane	Auglans	Arg					
	1	Panaparters	23,98	-	14/1011	0.00		-			
	* 5K #< 21K	President	1,00	żż	80.0	85.17	EDes				
	+ + 535K + > 235K	Sett, Tell	4.1	10	10.0	93		5		12284	
and the second		Bitc / Solicite	4	28	9-5,0010	0.98		-		1.000	
208		810			12,522.00						
		viente-e					lef i	Are)	leg_Lows	Aug_Depend	e Reg, Cycle
Less (Set			100			1000	-30 2015 1	1,00	8,545.00	83.1	4
		Course				34 3			0.042	32.40	
N ^{CA}		210-0454	1015				Det				
		Centerage	University	Cysle Time		Arg Dipense	1. 1. 1.		0,796.00	10.00	
		Patience)									-
		Panesent Par		1.	-		Dec 2	08.1	10,00.0	210.0	20

Analytics

Integrate assessment information with claims data to provide insight into and control over claims performance

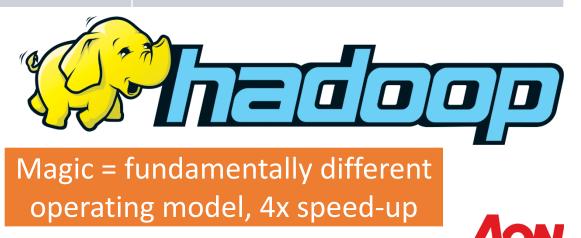
Section 2: Transforming Data into Information

Work and some magic transforms data into information



Old tools and methods compared to new tools and methods

Old World	New World
Expensive, customized hardware	Cheap, commodity hardware
Model data	Dump data
Pre-optimize (index) to expected queries	Post-optimize requested ad hoc queries
Early binding types	Late binding types
Inflexible, changes slow	Flexible, built to change
Compute everything, dimensional DW	Compute what you want, on demand
Move data to the code	Move the code to the data



Empower Results®

How new methods improve on old

Sex

Are two database records equal?

Age

Record

Memory 00101010101010101010101010010010111...

Wt

Ht

SSN

Zip

- Old School
 - $-Age_1 = Age_2$
 - $-\operatorname{Sex}_1 = \operatorname{Sex}_2$
 - $-Wt_1 = Wt_2$
 - $-SSN_1 = SSN_2$
 - Etc.
- Implement for each record type
- Slow to execute

New School

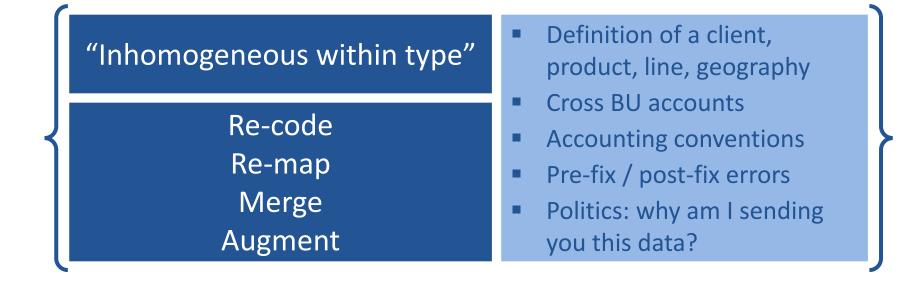
Etc.

Etc.

 Compare strings as binary numbers

- Works for ALL record types
- Quick to execute: primitive CPU function

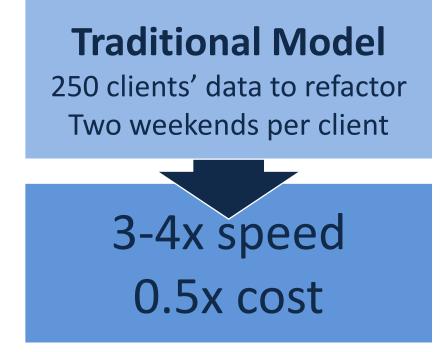
Path to quality data remains the same...work, no quick fix



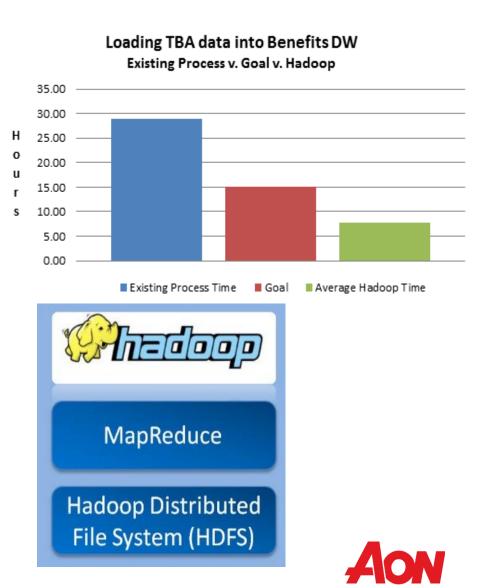
Aon GRIP: global repository of insurance data

- \$20B+ premium per year
- \$90 trillion limit
- 1,330 carriers
- 66,084 clients
- 52 lines of business
- 43 source systems
- 37 countries

Managing employee benefits data Aon Hewitt

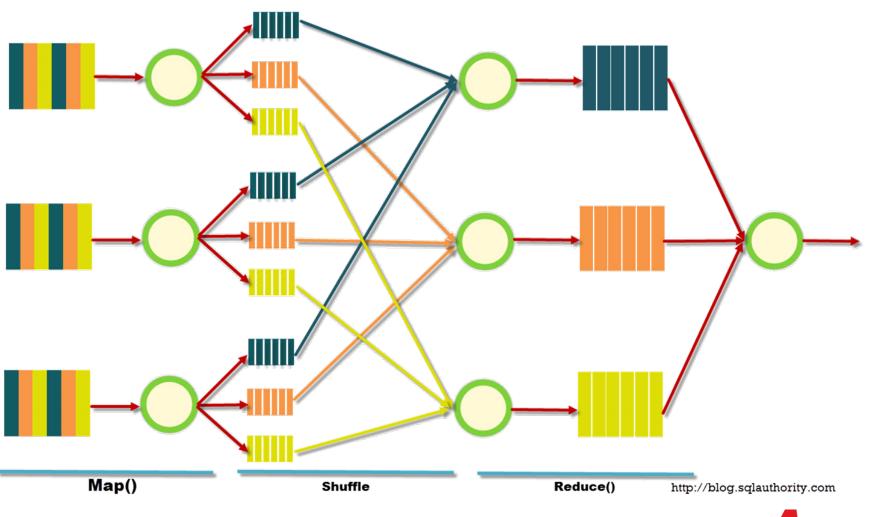


- Hadoop conceived as intermediate step to data warehouse
- Power and flexibility now allow it to become the data warehouse
 - Fast load; no pre-set data model
 - Flexible post-load querying



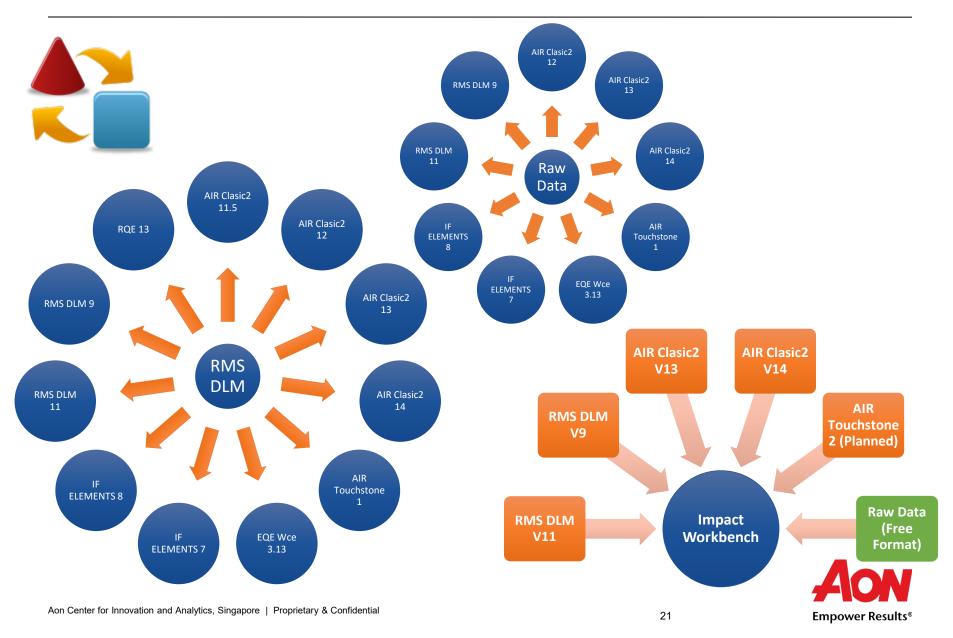
Empower Results[®]

What is MapReduce?



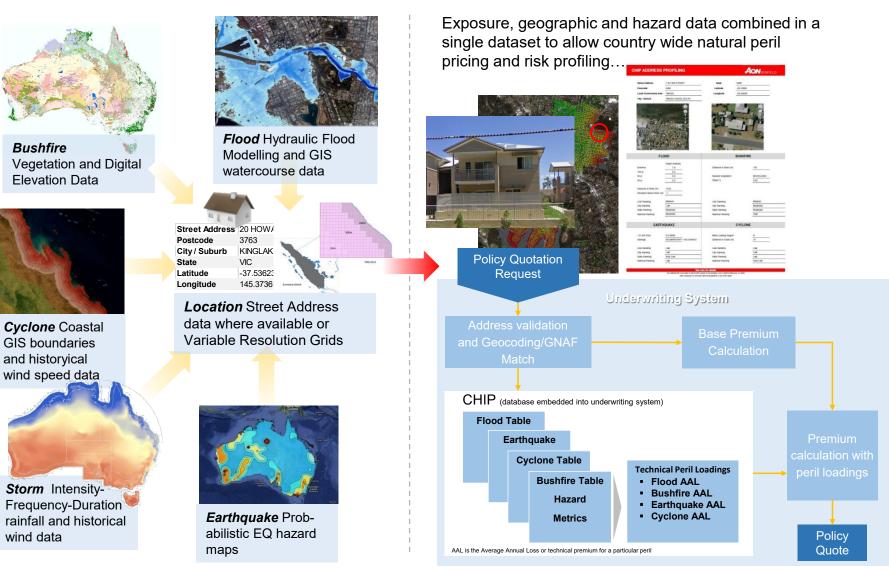
Catastrophe risk data transformation and management

Aon Benfield ImpactWorkbench



Multi-Source Catastrophe Hazard Information

Aon Benfield Analytics Australia, "CHIP"



Section 3: Transforming Information into Insight

Analysis transforms information into insight

Information

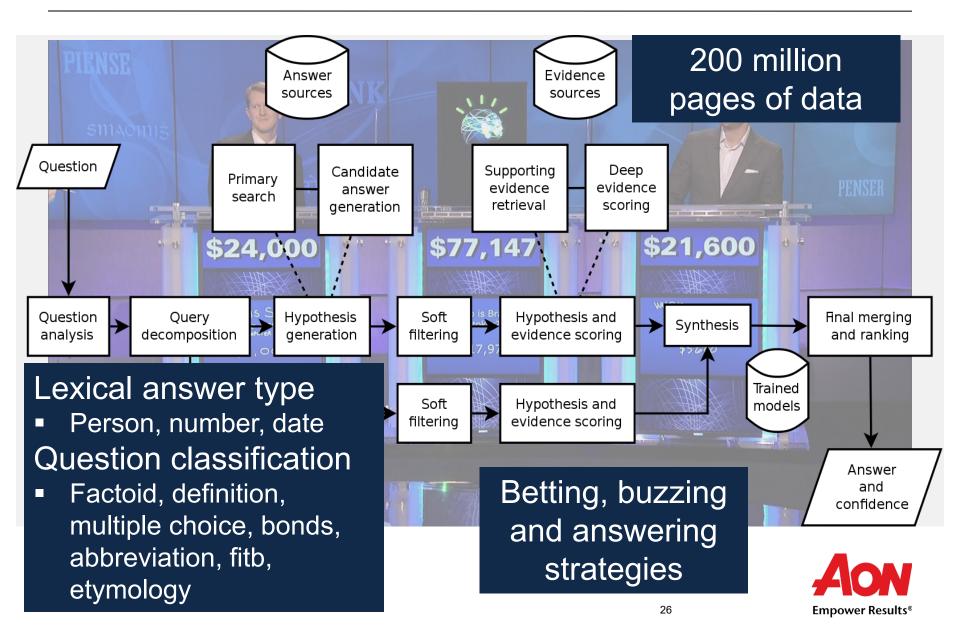
Insight

Algorithms

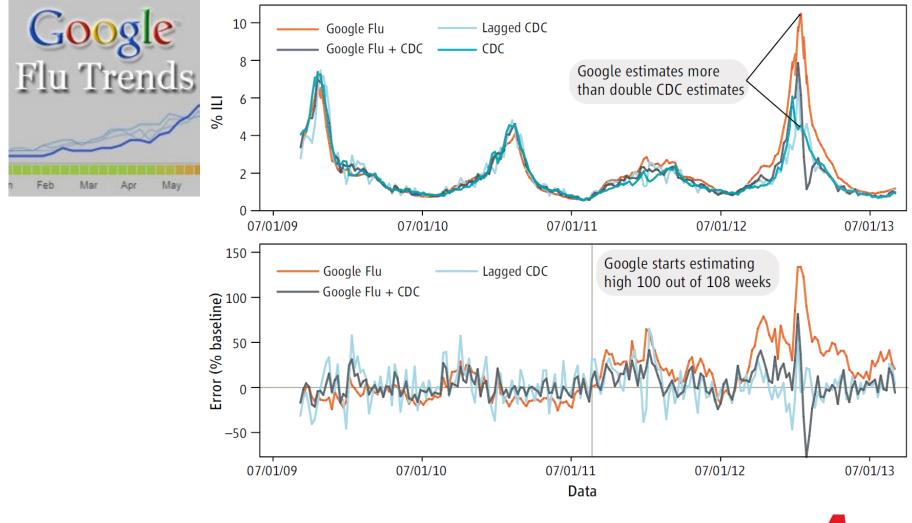
Machine Learning SVM · NLP Signal processing Topological models GAM · Splines R SAS Matlab Python Prolog

Big Data analysis memes

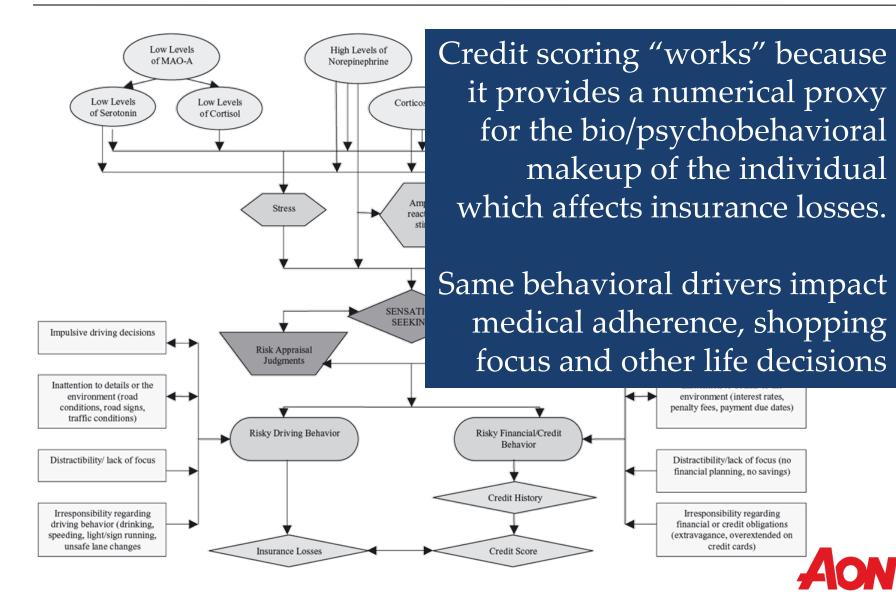
Watson Wins Jeopardy! Training model a "significant effort"



The Google Flu Trends story...the need for a theory



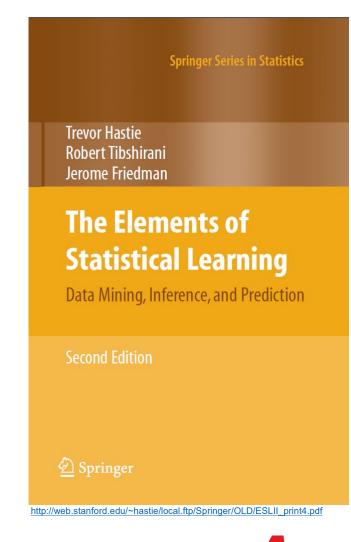
Need for a theory: the credit scoring model



Empower Results[®]

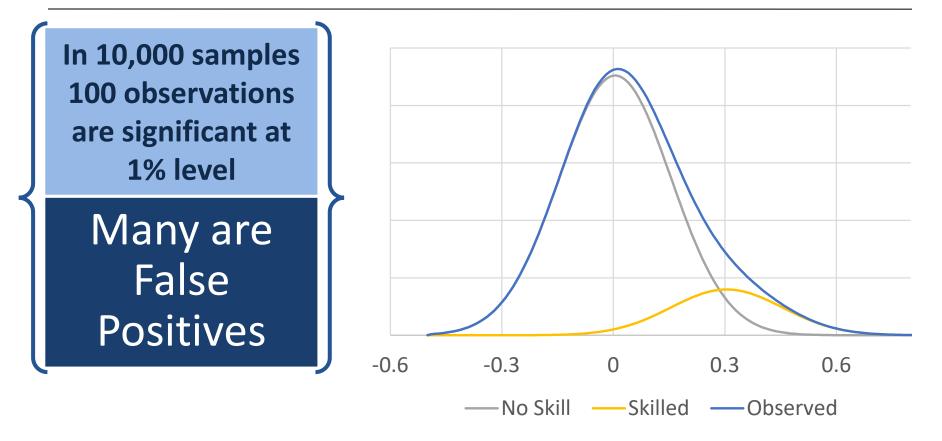
Techniques and algorithms

- Supervised vs. unsupervised
- Clustering
- Classification
- Machine learning
- Regression & linear models
- Support vector machines
- Naïve Bayes
- False discovery rate
- Topological data analysis
- Expansions & regularization, splines, kernels
- GAM
- Classification trees
- Boosting



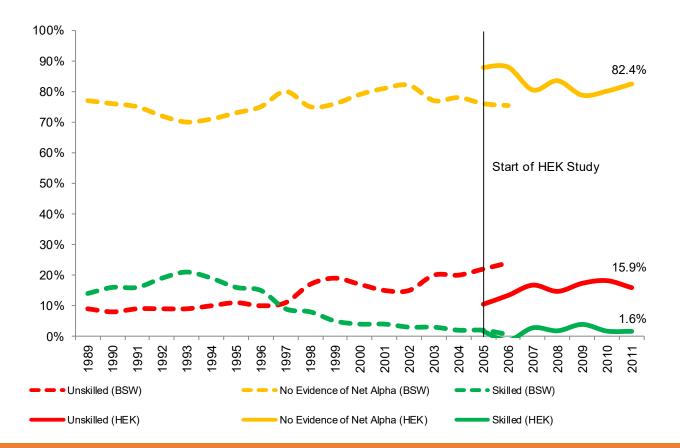
False discovery rate and investment performance

Aon Center for Innovation and Analytics / Hewitt EnnisKnupp



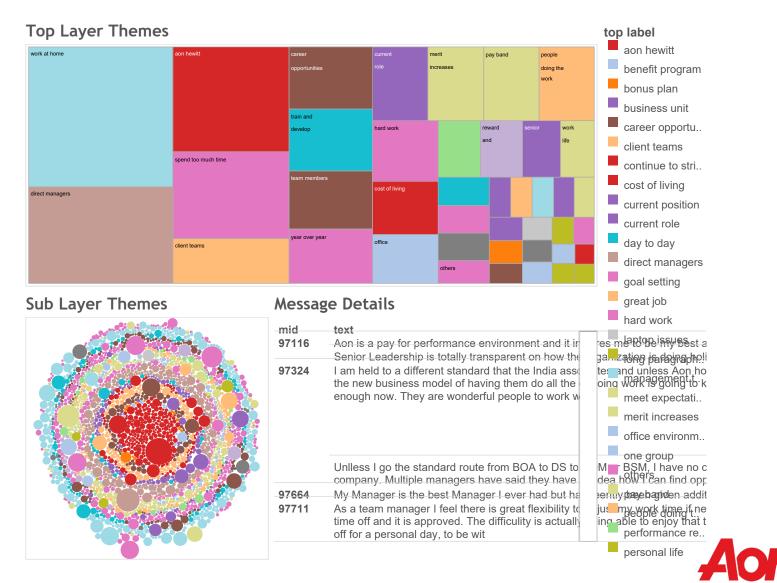
 With enough data you can use the empirical distribution, or parts of the empirical, to determine the null hypothesis distribution

False discovery rate and investment performance Aon Center for Innovation and Analytics / Hewitt EnnisKnupp



Manager skill has steadily declined since the 1990s, and we estimate that only about 2% of products demonstrate evidence of true skill today. Success with active management requires a high bar

Text mining: topic classification, clustering, and sentiment Aon Center for Innovation and Analytics / Aon Hewitt

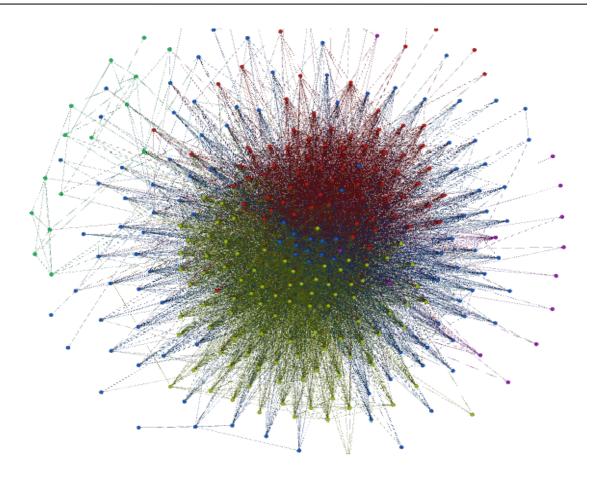


Empower Results[®]

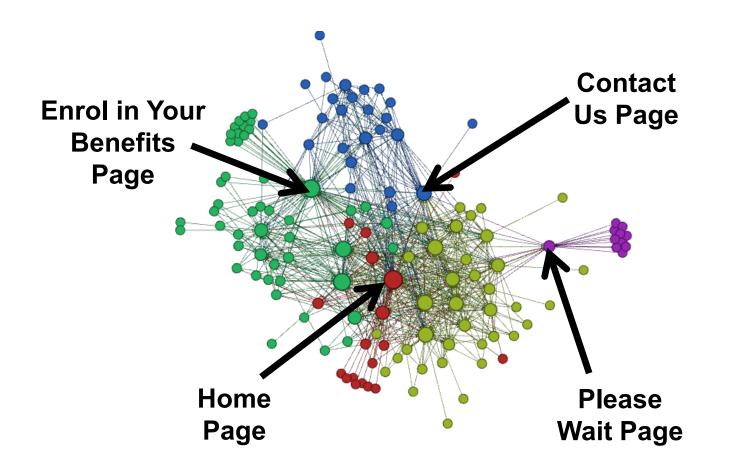
Customer experience and website usability

Aon Center for Innovation and Analytics / Aon Hewitt

- Six week annual enrolment period for large client
- 827,114 sessions
- 13,218,117 page views
- Traffic between pages



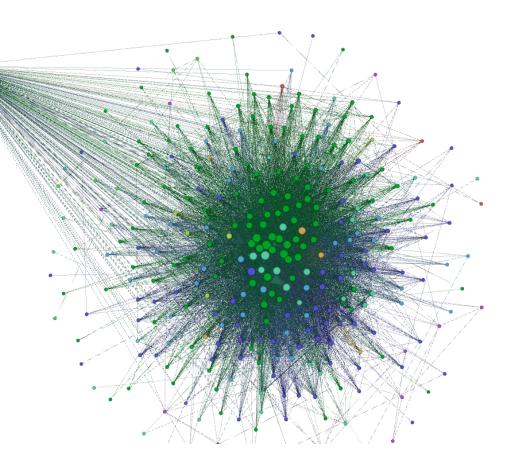
Which paths lead to the Contact Us page?



Smoking gun...

Back Button Page moved from center of cloud for emphasis

- 97,000 sessions involving the Back Button page
- 12%, or 11,600, resulted in a visit to the Contact Us Page



The "Back Button Cone"

Section 4: Communicating Insight for Action

Clear Communication of Insight Drives Action

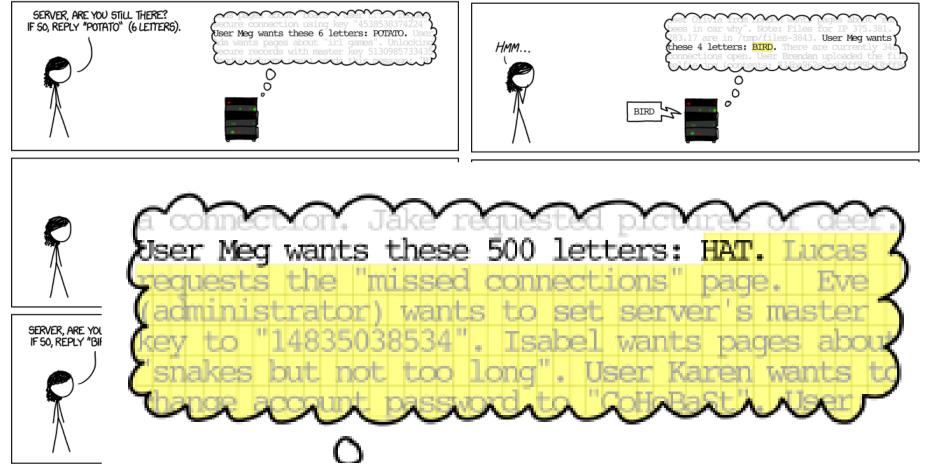
Insight

Communication Visualization Communication Communication

Section 5: The Dark Side

Heartbleed and data security

HOW THE HEARTBLEED BUG WORKS:

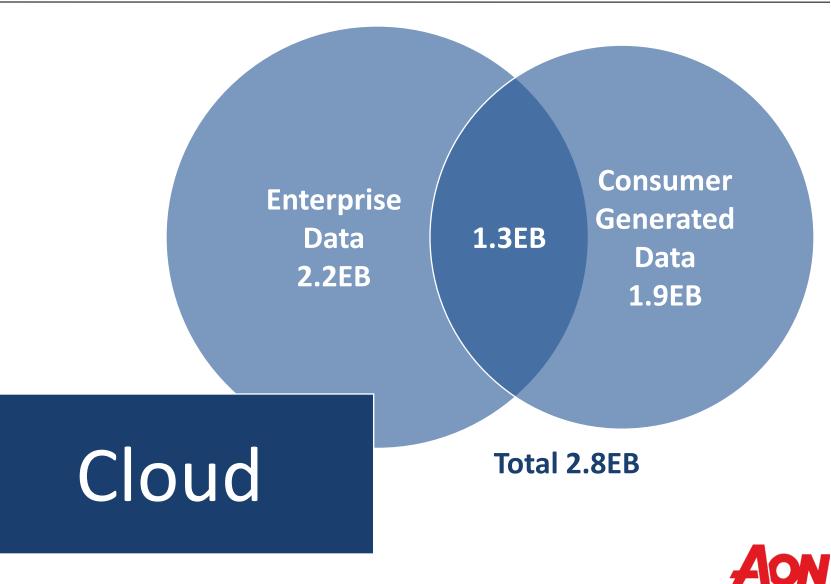


Privacy and security concerns

- Privacy
- Security
- Retention
- Processing
- Ownership
- Integrity

- Right to be forgotten
- Penalties based on propensities
- Uses of data that were not considered when data captured
- Opt-out creates a trace in an all-in world

Privacy and security concerns



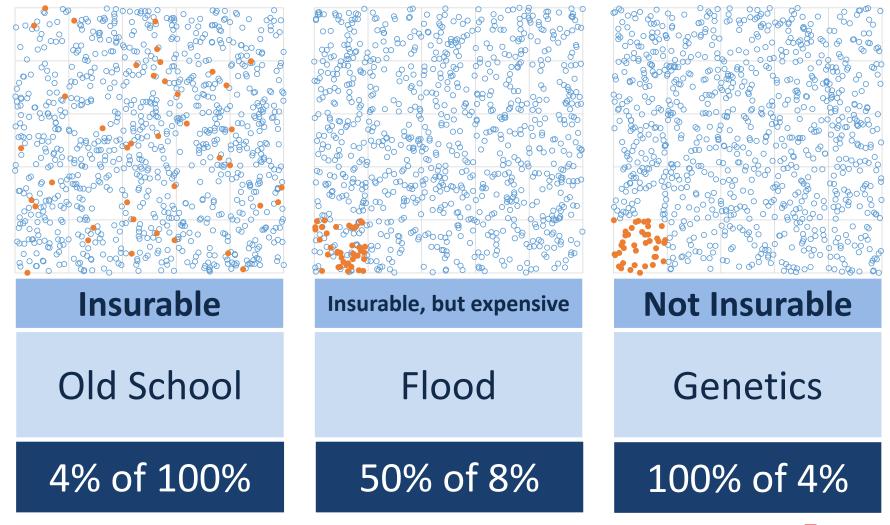
Empower Results®

Section 6: Moving Forward

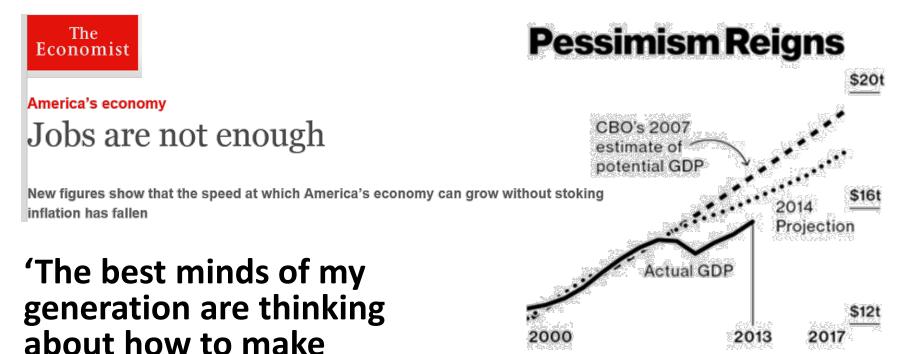
A: Yes: insurance. Actuaries can say with great confidence what percent of people with your characteristics will live to be 80. But no actuary would ever try to predict when you are going to die. They know exactly where to draw the line.

Peter Fader "Is there money in Big Data?" Frances and Pei-Yuan Chia Professor of Marketing Wharton School of the University of Pennsylvania

Big data and insurance: be careful what you wish for



If Big Data is so great why aren't projections better?



DATA: CONGRESSIONAL BUDGET OFFICE

Sucks.' Jeff Hammerbacher Founder and the Chief Scientist of Cloudera One of Facebook's first 100 employees

people click ads... That

Rational expectations from Big Data

Schumpeter Little things that mean a lot

Businesses should aim for lots of small wins from "big data", that add up to something big

Stimulated by all the talk from consultants and sellers of data-crunching software about the transformative potential of big data, managers may have been misled into hoping it will give them massive, instant, Holy Grail solutions. But such discoveries are rare; and if they do exist, they have probably been made already. The reality is that **big data produces lots of small advances**—and that is good enough.

Lessons from our journey...

Capture	Use the	Learn	Expect to do a
ALL the data	right tools	yourself	lot of work
Identify sources:	Modern IT tools	Can't out-source	IT/algorithm
what is your	enable new	institutional	magic only goes
digital exhaust?	analyses	knowledge	so far
Omnichannel interaction data	driving higher to lea	Invest in people to learn over time	80%+ time spent in data collection
Normalize coding and fix at source	N=All: myth or reality?	Tactical partnerships	Data is compe- titive advantage of the future

 ABA ready to partner with clients to advance your capabilities through joint projects, workshops, peer review

